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Abstract. The quadratic relations between the solutions of a Painlevé equation and that of a
different one, or the same one with a different set of parameters, are investigated in the continuous
and discrete cases. We show that the quadratic relations existing for the continuous PII, PIII, PV and
PVI have analogues as well as consequences in the discrete case. Moreover, the discrete Painlevé
equations have quadratic relations of their own without any reference to the continuous case.

1. Introduction

Painlevé equations (P’s) [1], being the prototypes of integrable ordinary differential equations,
are characterized by a wealth of special properties which makes their study both fascinating
and challenging. Among these properties a special role is played by exact relations which
can relate either the solutions of two different P’s, or the solutions of the same Painlevé
equation for different sets of parameters [2]. These relations are known as Miura and auto-
Bäcklund/Schlesinger transformations, respectively [3]. These transformations are given in
the form of rational expressions involving the solution of the Painlevé equation as well as its
derivative. Another class of relations is the one due to the point symmetries of the equations.
They typically assume a local form i.e. a relation where the derivative does not enter at all.

While the above class of relations is well known and thoroughly studied [4] (at least in the
case of continuous P’s) there exists a class of relations which has not attracted much interest.
These relations are of a special type in the sense that they relate the solution of a given Painlevé
equation to the square of that of some other P (which can be the same as the initial one). The
fact that such quadratic relations exist can be traced back to the fact that the Painlevé equations
have singularities which, in general, can be simple or double poles (or zeros). Thus a quadratic
relation relates a solution which has only simple poles to one where all poles are double. These
relations generally exist only for special values of the parameters of a given Painlevé equation.
Let us make these considerations clearer through an example. Consider the PIII equation [5]:

w′′ = w′2

w
− w′

t
+

1

t
(αw2 + β) + γw3 +

δ

w
. (1.1)

When γ δ �= 0 one can always, through a change of variables which are both dependent and
independent, scale γ to 1, δ to −1, and α and β are two genuine parameters. Moreover,
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Schlesinger transformations allow us to go from one set (α, β) to some other set, so zero
values for these two parameters are not really special. (A caveat is mandatory at this point.
The Schlesinger transformations do not allow one to generate arbitrary values of the parameters
but only values which differ by some integer. Thus when we start from zero values for α and
β we can transform them to values in Z but not to values in R. Still whenever this is possible
we consider that the parameters α and β are indeed present and thus the equation is essentially
in generic form.) If only one of the quantities γ or δ vanishes, there is one genuine parameter
left. However, if both γ and δ vanish we obtain an equation with no parameter at all, since
then both α and β can be scaled to 1 and −1, respectively, for instance (unless one or both
vanish, in which cases (1.1) is no longer a transcendental equation). So the equation

w′′ = w′2

w
− w′

t
+

1

t
(w2 − 1) (1.2)

where no Schlesinger transformations exist, that could regenerate γ or δ, is really a zero-
parameter transcendental equation in its own right, which we call the zero-parameter PIII.
(The term ‘zero parameter’ is to be understood in the light of the remark above, in the sense
that there is no way to introduce, through Schlesinger transformations, a parameter even taking
values in Z.) If in this equation we set w = u2, t = s2/2 we obtain for x as a function of
s exactly equation (1.1) with γ = 1, δ = −1 and zero values for α and β. This shows that
a quadratic relation transforms the zero-parameter PIII into a particular case of the full PIII

(non-zero values of α and β can be regenerated through Schlesinger transformations). As we
shall see in what follows, this is not the only known instance of such a quadratic relation. When
some constraints on the parameters are satisfied, the PV equation is related to PIII through such
a quadratic relation, and also to a reduced case of itself, while PVI can be related to itself.

What do these results imply for the discrete Painlevé equations (d-P) [6]? Since the
Painlevé equations possess discrete forms, it is expected that the quadratic relations carry over
from the continuous systems to their discrete analogues. Moreover, as we have explained in
previous work, some of the discrete (difference) Painlevé equations are contiguity relations
of the continuous ones [7]. Thus, a quadratic relation between solutions of the continuous
P’s must have visible consequences in the discrete case. Lastly, as the d-Ps are, in some
sense, richer than the continuous ones, they may possess some quadratic relations of their
own, without reference whatsoever to continuous systems. Let us illustrate this last point with
a particular case of the d-PI equation:

x + x + x = z

x
(1.3)

where z = αn + β for some constant α, β while x denotes xn and x ≡ xn+1, x ≡ xn−1. The
right-hand side of the standard d-PI is written as t + z/x where t is a constant that, when it
is not zero, is usually scaled to 1. Here we consider the t = 0 case and the corresponding
equation, (1.3), was dubbed in [8] d-P0 and has no non-trivial continuous limit. We multiply
both sides of (1.3) by x and introduce the variables X = x2 and y = xx. We have thus from
(1.3), y + y +X = z and, from the definition of y, XX = y2. Eliminating X between the two
equations we obtain for y the mapping

(y + y − z)(y + y − z) = y2. (1.4)

Equation (1.4) is another special form of a d-PI which was first obtained in [9]. Thus we have
established a quadratic relation, which is, in fact, a degenerate form of a Miura transformation,
between two d-PI’s.

In this paper, we shall examine the quadratic relations of continuous and discrete P’s. In the
continuous case, we present the quadratic relations for PII, PIII, PV and PVI. The organization
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we have chosen for the discrete cases is to start with the discrete q-PVI [10] and proceed from
this seven-parameter equation down towards equations with fewer parameters.

2. Quadratic relations for continuous Painlevé equations

As we have seen in the introduction, one very simple quadratic relation is that relating the
zero-parameter PIII to a special case of the full PIII. Another, even simpler, case does, however,
exist. Let us start with PII

u′′ = 2u3 + tu + α (2.1)

in which we take α = 0. Multiplying by w and introducing w = u2 we obtain the equation

w′′ = w′2

2w
+ 4w2 + 2tw (2.2)

which is equation XX in the Painlevé-Gambier classification.
Another well known quadratic relation is that relating PV to PIII [11]. We start from PV in

the form

w′′ = w′2
(

1

2w
+

1

w − 1

)
− w′

t
− (w − 1)2

t2

(
αw +

β

w

)
+ γ

w

t
+ δ

w(w + 1)

w − 1
(2.3)

and assume that α = β = 0. Next, we introduce the quadratic dependent variable
transformation w = (u + 1)2/(u− 1)2 and obtain the PIII equation

u′′ = u′2

u
− u′

t
− γ

4t
(u2 − 1)− δ

8

(
u3 − 1

u

)
. (2.4)

Given this form it is always possible, for non-zero δ, to bring the equation to the form

u′′ = u′2

u
− u′

t
− a

t
(u2 − 1) + u3 − 1

u
(2.5)

through a scaling of the independent variable. We must point out that although (2.5) contains
just one parameter a, it is not the one-parameter PIII we introduced (and studied exhaustively)
in [12]. Equation (2.5) should be understood, rather, as the full PIII (1.1) with a constraint on
the parameters, namely α = −β (= a). On the other hand, if we start from (2.3) with δ = 0,
we recover precisely the zero-parameter PIII, equation (1.2).

The quadratic relations of PV and PVI to themselves do not seem to be as well known. In
the case of PV (2.3) one has to make the following remark. If δ �= 0, the values of α, β and
γ can be modified by Schlesinger transformations, so the particular values α = β = 0 that
allow the quadratic transformation to PIII are not really special. Another set of particular values
for these modifiable parameters is β = −α, γ = 0. In that case, a quadratic transformation
v = 4w/(w+ 1)2, i.e. 1−v = (w−1)2/(w+ 1)2, and a change of independent variable z = t2

leads, for v as a function of z, to PV with parameters α̃, β̃, γ̃ , δ̃. The latter are related to the
parameters of the initial equation by α̃ = 0, β̃ = −4α, γ̃ = −δ/4, δ̃ = 0. The fact that δ̃ = 0
is important, since this value cannot be modified by Schlesinger transformations and this PV

equation is genuinely reduced. As a matter of fact, it has been known for long [2] that this
reduced PV is, in fact, a Miura of the PIII equation.

In the case of PVI, we start from

w′′ = w′2

2

(
1

w
+

1

w − 1
+

1

w − t

)
− w′

(
1

t
+

1

t − 1
+

1

w − t

)

+
w(w − 1)(w − t)

2t2(t − 1)2

(
α − β

t

w2
+ γ

t − 1

(w − 1)2
+ (1 − δ)

t (t − 1)

(w − t)2

)
. (2.6)
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We next assume that α = β = 0. In this case there exists a quadratic transformation which
allows us to convert PVI in the variables w, t again to a PVI for the variables u, s:

t =
(

1 +
√
s

1 − √
s

)2

w =
(
u +

√
s

u− √
s

)2

. (2.7)

If we denote the parameters of the new PVI by α̃, β̃, γ̃ , δ̃ the following relations hold:

α̃ = β̃ = 1
4γ γ̃ = δ̃ = 1

4δ.

As we shall see in what follows these relations for continuous P’s have both discrete analogues
and discrete consequences.

Our findings on the quadratic relations between Painlevé equations are summarized in
table 1.

Table 1.

Simple singularity Double singularity

i PII (α = 0) P20

ii PIII (α = β = 0) Zero-parameter PIII (γ = δ = 0)
iii PIII (α = −β) PV (α = β = 0)
iv PV (α = −β, γ = 0) PV (δ = 0, α = 0)
v PVI (α = β, γ = δ) PVI (α = β = 0)

3. Quadratic relations for discrete Painlevé equations

3.1. The discrete PVI equation

In [10] we have presented the discrete form of the PVI written as the three-point, five-parameter
mapping:

(xx − zz)(xx − zz)

(xx − 1)(xx − 1)
= (x − az)(x − z/a)(x − bz)(x − z/b)

(x − c)(x − 1/c)(x − d)(x − 1/d)
(3.1)

where a, b, c, d , are constants, z ≡ zn = z0λ
n for some constant λ, z ≡ zn+1 and z ≡ zn−1.

As we have shown in [13], equation (3.1) possesses an ‘asymmetric’ form which involves
seven parameters. The term ‘asymmetric’ is used following the QRT [14] terminology and
means that the system can be expressed as a system of two two-point mappings. It turns out
that imposing quadratic relations on the asymmetric q-PVI forces it back to the symmetric
form and thus we shall concentrate on the latter. Exactly the same situation will arise for the
equations of subsections 3.2–3.4 below.

Two possibilities of quadratic relations exist: either the right-hand side of (3.1) is a perfect
square or it depends only on x2. Let us explore the first one. The condition for this is b = a,
d = c, in which case we have

(xx − zz)(xx − zz)

(xx − 1)(xx − 1)
=
(
(x − az)(x − z/a)

(x − c)(x − 1/c)

)2

. (3.2)

Next we introduce the variable y through y2 = −(xx − zz)/(xx − 1) and rewrite (3.2) as the
system

yy = (x − az)(x − z/a)

(x − c)(x − 1/c)

xx = y2 + zz

y2 + 1
.

(3.3)
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Equation (3.3) can now be identified as a particular case of the asymmetric q-PIII equation,
which as was shown by Jimbo and Sakai [15] is a discretization of PVI. Note that here the
quantity which is a perfect square is not the initial variable but a more complicated expression.
This relation is the discrete analogue of case v of table 1.

The second possibility corresponds to x appearing only as x2 in the right-hand side
of (3.1). The constraint in this case is b = −a, d = −c. Introducing X ≡ x2, and
Y = (xx − zz)/(xx − 1) we can rewrite (3.1) as

YY = (X − a2z2)(X − z2/a2)

(X − c2)(X − 1/c2)

XX =
(
Y − zz

Y − 1

)2

.

(3.4)

Just like system (3.3), equation (3.4) is a subcase of asymmetric q-PIII. Since the latter is a
discrete PVI this quadratic relation is also the discrete analogue of case v of table 1.

3.2. The discrete, difference, PV

The three-point mapping form of PV was presented in [10] and is written as

(x + x − z− z)(x + x − z− z)

(x + x)(x + x)
= (x − z− a)(x − z + a)(x − z− b)(x − z + b)

(x − c)(x + c)(x − d)(x + d)
(3.5)

where z ≡ zn = αn + β. Given the form of (3.5), it is clear that the right-hand side can never
depend on x2 only, so the only possibility for a quadratic relation is when the right-hand side
becomes a perfect square. This is true whenever b = a, d = c. We can, in this case, introduce
y through y2 = −(x + x − z− z)/(x + x) which results in the system

yy = (x − z− a)(x − z + a)

(x − c)(x + c)

x + x = z + z

1 + y2
.

(3.6)

This equation is a special form of the discrete PV we have introduced in [16]. Its general form
reads

x + x = z̃ + p

1 − y/t
+
z̃− p

1 − ty
(3.7a)

yy = (x − z)2 − a2

x2 − c2
(3.7b)

with z̃ = z + α/2 and in order to obtain (3.6) we must take t = i, p = 0. Note that the
parameter t cannot be altered through Schlesinger transformations (contrary to a, c and p). In
fact, equation (3.7) is a contiguity relation of the solutions of the (continuous) PVI equation and
t (or, rather, t2) is the continuous variable of the latter. The quadratic relation crucially depends
on the special value i for t and thus is not a contiguity relation valid for arbitrary values of the
continuous variable. The constraints for the quadratic relation to exist are incompatible with
the continuous limits of (3.5) and (3.6) to PV.
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3.3. The q-discrete PV

The symmetric form of q-PV reads

(xx − 1)(xx − 1) = (x − a)(x − 1/a)(x − b)(x − 1/b)

(1 − zxc)(1 − zx/c)
(3.8)

with z = z0λ
n for some constant λ. Here again there are two possibilities for a quadratic

transformation. First, the right-hand side can be a perfect square. The constraint on the
parameters in this case is b = a, c = 1. Introducing the variable y through y2 = xx − 1 we
obtain the system

yy = (x − a)(x − 1/a)

(1 − zx)

xx = y2 + 1.
(3.9)

The second quadratic relation is obtained when x appears solely in the form of x2 in the right-
hand side of (3.8). This happens whenever a = −b, c = i. Introducing Y = xx − 1, X = x2

we obtain the system

YY = (X − a2)(X − 1/a2)

(1 − z2X)

XX = (Y + 1)2.

(3.10)

Both systems (3.9) and (3.10) are special cases of a system where the second equation is written
as xx = (y−p)(y−1/p) (or the capitalized version thereof), where p is a free constant. This
system is the Miura transform of the asymmetric form of an equation, the symmetric form of
which was identified as a q-PII in [9]. The full equation

vv = αζw + γ ζ 2

v(v − 1)

ww = βζ̃v + γ ζ̃ 2

w(w − 1)

(3.11)

with ζ = ζ0λ
n, ζ̃ = ζ

√
λ and α, β, γ constants, is, in fact, a q-PIII and has been studied in

[17]. With the transformation

x = w(v + αζ − vw)

αrζ

y = vw − αζ

pv

(3.12)

where a2 = β
√
λ/α, p2 = αβ/γ

√
λ we obtain the generalization of system (3.9)

yy = (x − a)(x − 1/a)

(1 − zx)

xx = (y − p)(y − 1/p)
(3.13)

with z = −aα/γ ζ . Both quadratic relations obtained above are q-discrete analogues of case iii
of table 1.
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3.4. The discrete, difference, PIV

Here too, we start with the symmetric form:

(x + x)(x + x) = (x − a)(x + a)(x − b)(x + b)

(x − z− c)(x − z + c)
(3.14)

where z = αn + β. A quadratic relation exists only if a = b, c = 0. Introducing the variable
y through y2 = −(x + x) we obtain the system

y + y = x2 − a2

x − z
(3.15a)

x + x = −y2. (3.15b)

This equation is a Miura transform of a particular limiting case of the asymmetric d-PI we have
studied in [18].

v + u + v = t − z− a

u

u + v + u = t − z + a

v

(3.16)

with the following relations:

x = uv + z y = v + u (3.17)

leading to (3.15a) and a generalized form of (3.15b), namely

x + x = −y(y − t). (3.18)

Here t is the (independent) variable of an underlying continuous PIV equation, and the
asymmetric d-PI (3.16) is just the contiguity relation of the solutions of PIV. The limit we
refer to is t = 0, in which case (3.16) corresponds to an asymmetric form of the d-P0 we
examined in the introduction. As in subsection 3.2 above, the quadratic relation, only valid
for t = 0, is not related to a contiguity relation valid for t arbitrary. The quadratic relation
obtained here is an essentially discrete property.

3.5. The asymmetric q-PIII

In the case of q-PIII the quadratic relation exists for the asymmetric case:

yy = (x − za)(x − z/a)

(1 − xc)(1 − x/c)
(3.19a)

xx = (y − z̃c)(y − z̃/c)

(1 − yd)(1 − y/d)
(3.19b)

with z = z0λ
n, z̃ = z

√
λ. The right-hand side of (3.19a) is a perfect square when a = c = 1,

while it is a function of y2 only if a = c = i. In both cases, one finds exactly the relations
we have encountered in subsection 3.1 relating this equation to q-PVI. These relations have a
historical importance, since it was their derivation that actually led to the discovery of the full
q-PVI in the form (3.1) (and also of its asymmetric, seven-parameter generic form).
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3.6. The d-PV , contiguity relation of PVI

In subsection 3.2 we encountered a relation between two discrete PV equations, the second of
which (3.7) is the contiguity relation of PVI. The quadratic relation obtained there was only
valid for a fixed value of the independent (continuous) variable of PVI. In what follows we
shall examine the quadratic relation of (3.7)

x + x = z̃ + p

1 − y/t
+
z̃− p

1 − ty
(3.7a)

yy = (x − z)2 − a2

x2 − c2
(3.7b)

(where z = αn + β) where t is now a free parameter. Clearly, such a relation may exist only
if the right-hand side of (3.7b) is a perfect square, i.e. a = c = 0. In this case we introduce
y = Y 2 and find YY = 1 − z/x which can be solved for x, leading to the equation

z

1 − YY
+

z

1 − YY
= z̃ + p

1 − Y 2/t
+
z̃− p

1 − tY 2
. (3.20)

This equation can further be brought to canonical form through the transformation t = r2,
Y = (1 − rX)/(r −X). We thus find

z

1 −XX
+

z

1 −XX
= p

2
+ z̃ +

p(s2 − 1)X + s(1 −X2)z̃

2(X + s)(1 +Xs)
(3.21)

where s = −(1 + r2)/2r . Equation (3.21) is a special case of the equation introduced in
[19] (under the name ‘master d-PII’). As we have shown there, equation (3.21) is also a
contiguity relation of solutions of PVI (although X as it enters in (3.21) is not the variable
of PVI, but rather is related to it through a homographic transformation). Thus the quadratic
relation between (3.7) and (3.21) is nothing but a consequence of the quadratic relation we
obtained in section 2 for PVI, i.e. case v of table 1. Moreover, this relation has an even more
interesting interpretation. Equation (3.21) has PIII as its continuous limit. Thus the quadratic
relation between (3.7) (which is a discrete PV) and (3.7) is the discrete analogue of the relation
between PV and PIII, i.e. of case iii of table 1. This is the first time, to our knowledge, that
such a relation has been obtained explicitly in a discrete setting.

The general asymmetric form of the ‘master d-PII’ equation is

z

1 −XX
+

z

1 −XX
= a + z̃ +

b(s2 − 1)X + s(1 −X2)(z̃/2 + (−1)nc)

(X + s)(1 +Xs)
. (3.22)

A question that seems natural at this point is whether (3.23) has any quadratic relations apart
from the one we introduced in the previous paragraph. We find readily that the right-hand side
of (3.22) depends only on X2 if s = i, b = 0. Note that since s is related to the continuous
variable of the PVI, the solutions of which have (3.22) as a contiguity relation, the quadratic
relation we are going to obtain exists only for a fixed value of this independent variable. In
this case we introduce x = X2, y = z/(1 −XX) and find

y + y = a + z̃ +
1 − x

1 + x
(z̃/2 + (−1)nc) (3.23a)

xx =
(
z− y

y

)2

. (3.23b)
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We can now solve (3.23a) for x and obtain a single equation for y. Finally, we find(
y + y − a − 3z̃/2 − (−1)nc

y + y − a − z̃/2 + (−1)nc

)(
y + y − a − 3z

˜
/2 + (−1)nc

y + y − a − z
˜
/2 − (−1)nc

)
=
(
z− y

y

)2

. (3.24)

Equation (3.24) belongs to the (asymmetric) d-PV family (3.5) with only two factors instead of
four in both the numerator and the denominator of the right-hand side. An equation of the form
(3.24) was obtained in [13] where we have shown that it introduces a Miura transformation
for (asymmetric) d-PV (3.5). A translation of y suffices in order to bring (3.24) into canonical
form.

3.7. The asymmetric d-PII , contiguity relation of PV

The general form of the asymmetric d-PII is

y + y = zx + a

x2 − 1
(3.25a)

x + x = z̃y + b

y2 − 1
(3.25b)

where z = αn + β and z̃ = ζ + α/2. A first, obvious, quadratic relation can be obtained when
both a and b vanish. In that case the system (3.24) can be rewritten as a symmetric mapping
for a single function:

v + v = zv

v2 − 1
. (3.26)

Multiplying both sides of (3.26) by v and introducing X = v2, W = vv, we find this system:

W +W = zX

X − 1
(3.27a)

XX = W 2. (3.27b)

If one wants, one can solve (3.27a) for X to find an equation for W only, namely

(W +W − z)(W +W − z)

(W +W)(W +W)
= 1

W 2
. (3.28)

This equation is a particular case of an equation already identified in [20] as the Miura transform
of the equation known as the ‘alternate d-PII’ equation:

z

1 + uu
+

z

1 + uu
= u− 1

u
+ z + µ. (3.29)

The Miura transformation is X = zu/(1 + uu) + 1, W = uX + µ/2. From (3.29) it follows
that W = X/u− µ/2, so in general the relation between X, X and W should be written as

XX = W 2 − µ2/4. (3.30)

Moreover, equation (3.27a) follows immediately from using the first expression of W and
the downshift of the second one for W . So it is the system (3.27a) and (3.30) which is the
complete Miura transform of (3.29), and the equation forW alone is obtained in replacingW 2

by W 2 − µ2/4 in (3.28). Still, equation (3.27) is a particular case of it, when the constraint
µ = 0 holds. Since (3.29) is known to be the contiguity relation of solutions of PIII [21], while
(3.25) is the contiguity relation of solutions of PV one could naively think that this quadratic
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relation is a consequence of the relation between PV and PIII, i.e. case iii of table 1. However,
this is not the case. Indeed, the quadratic transformation does not lead to the solution u of PIII,
but to its Miura transform X which satisfies the reduced PV with δ = 0. Thus this relation
is, in fact, a discrete consequence of the quadratic relation between PV and its reduced form,
i.e. case iv of table 1. Moreover, it is the discrete analogue of case i of table 1, since in the
continuous limit (3.26) and (3.28) go, respectively, to PII (α = 0) and P20.

The consequence of the relation between PV and PIII, i.e. case iii of table 1, can also be
seen as a quadratic relation between the asymmetric d-PII and the alternate d-PII as follows.
Let us start from the latter, equation (3.29) with the constraint that µ = (z− z)/2. Then if we
define

w = 1 + u2

2u

x = u− u

1 − uu
(3.31)

y = z

2(x − w)
− 1

one finds that x and y satisfy (3.25) with a = 0, b = (z − z)/2. This does not look so much
like a quadratic relation unless one realizes that

w − 1

w + 1
=
(
u− 1

u + 1

)2

(3.32)

so, in fact, equation (3.32) is indeed a quadratic relation between the solution u of PIII and the
object (w − 1)/(w + 1). In fact, this relation is exactly of the form expected from section 2
which means that the quantity (w− 1)/(w + 1) is itself a solution of PV, even though w seems
to be only an object related through a Miura transform to x and y that satisfy asymmetric
d-PII and therefore PV (more precisely, the quantities that satisfy PV in canonical form are
(x − 1)/(x + 1), (y − 1)/(y + 1)).

3.8. The asymmetric d-PI , contiguity relation of PIV

We have already seen in subsection 3.4 that a Miura transform of this equation, namely (3.15a)–
(3.18) was related through a quadratic transformation to the discrete, difference, PIV. Moreover,
in the introduction we have already considered the symmetric form of this equation. For
completeness, we now consider the fully asymmetric d-PI which we do not write as a two-
variable system (3.16) but as a single equation, with an explicit (−1)n contribution

x + x + x = t − z + (−1)na

x
(3.33)

with z = αn+β. With the same notation as in the introduction,X = x2, y = xx, and provided
t = 0, we find the generalized form of (1.4), namely

(y + y − z + (−1)n+1a)(y + y − z + (−1)na) = y2. (3.34)

This equation has been identified in [13] as a Miura of, again, the discrete, difference, d-PIV

but in its asymmetric form (for particular values of the parameters of the latter). This quadratic
relation is an essentially discrete one.
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We have seen in subsection 3.7 that there are two ways for the alternate d-PII (3.29),
contiguity relation of PIII, to be related to the asymmetric d-PII (3.25) and we did not find any
more quadratic relations for it, nor did we find any for the alternate d-PI equation,

z

x + x
+

z

x + x
= x2 + t (3.35)

which is the contiguity relation of PII. This completes our survey of quadratic relations for
discrete Painlevé equations.

4. Conclusion

In this paper we have examined the quadratic relations that exist between the solutions
of Painlevé equations. These quadratic relations can be considered as degenerate Miura
transformations and exist only for some of the P’s when special constraints are satisfied.

The discrete Painlevé equations also possess quadratic relations. Some of them are just
the discrete analogues of the relations for the continuous P’s, while others are their direct
consequences (and sometimes both at the same time). Prominent among these quadratic
relations is the discrete analogue of the between PV and PIII which has been missing until now
and which is also the discrete consequence of the quadratic relation between solutions of PVI.
One must also stress the historical role played by the quadratic relations in the discovery of
the discrete q-PVI equation.

All in all, the study of the quadratic relations turned out to be particularly interesting and
revealed another (not so well known) aspect of the Painlevé equations, thus confirming the
wealth of their structure.
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